发布时间:2024-01-17 15:59:55
编辑:Lily来源:网络浏览:次
2023-2024新赛季12月月赛中,USACO竞赛黄金组别题目是什么?考察知识点又有哪些?今天我们给大家整理了12月USACO竞赛黄金组别考情分析,希望对大家有所帮助。
12月USACO黄金组别考情分析
Bessie recently discovered that her favorite pop artist, Elsie Swift, is performing in her new Eras Tour! Unfortunately, tickets are selling out fast, so Bessie is thinking of flying to another city to attend the concert. The Eras tour is happening in N(2≤N≤750) cities labelled 1…N, and for each pair of cities (i,j) with i<j there either exists a single direct flight from i to j or not.
A flight route from city a to city b (a<b) is a sequence of k≥2 cities a=c1<c2<⋯<ck=b such that for each 1≤i<k, there is a direct flight from city ci to city ci+1. For every pair of cities (i,j) with i<j, you are given the parity of the number of flight routes between them (0 for even, 1 for odd).
While planning her travel itinerary, Bessie got distracted and now wants to know how many pairs of cities have direct flights between them. It can be shown that the answer is uniquely determined.
考情分析
从相邻位置来考虑比较简单,如果i到i+1路径为奇数,说明i到i+1有边,反之没有。
考虑任意点i和j的时候,只需要利用区间dp的思想计算出i到j除了直接到达的路径有多少条,看一下是否满足奇偶性即可。
时间复杂度: O(n^3)
知识点:区间dp
Bessie is going on a trip in Cowland, which has N (2≤N≤2⋅10^5) towns numbered from 1 to N and M (1≤M≤4⋅10^5) one-way roads. The i-th road runs from town ai to town bi and has label li
(1≤ai,bi≤N, 1≤li≤10^9).
A trip of length k starting at town x0 is a sequence of towns x0,x1,…,xk, such that there is a road from town xi to town xi+1 for all 0≤i<k. It is guaranteed that there are no trips of infinite length in Cowland, and that no two roads connect the same pair of towns.
For each town, Bessie wants to know the longest possible trip starting at it. For some starting towns, there are multiple longest trips - out of these, she prefers the trip with the lexicographically minimum sequence of road labels. A sequence is lexicographically smaller than another sequence of the same length if, at the first position in which they differ, the first sequence has a smaller element than the second sequence.
Output the length and sum of road labels of Bessie's preferred trip starting at each town.
考情分析
首先题目保证给出图是DAG,那么我们要求最长路的话就可以利用拓扑排序/bfs来解决。
难点在于题目要求字典序最小,考虑如何快速比较两条出边的字典序大小
由于题目权值可以相同暴力走下去比较时间复杂度会被卡到$O(n^2)$
为了优化比较过程,我们希望能够快速得到两个最长路相同的点他们之间的字典序关系。
所以我们可以动态地对最长路相同的点的内部做一个排序,比较的时候就只需要拿出之前维护好的排序结果去做判断,判断时间复杂度就可以做到O(1)
总时间复杂度:O(nlogn)
知识点:拓扑排序,字典序
Farmer John is distributing haybales across the farm!
Farmer John's farm has N (1≤N≤2⋅10^5) barns, located at integer points x1,…,xN (0≤xi≤10^6) on the number line. Farmer John's plan is to first have N shipments of haybales delivered to some integer point y (0≤y≤10^6) and then distribute one shipment to each barn.
Unfortunately, Farmer John's distribution service is very wasteful. In particular, for some ai and bi
(1≤ai,bi≤10^6), ai haybales are wasted per unit of distance left each shipment is transported, and bi haybales are wasted per unit of distance right each shipment is transported. Formally, for a shipment being transported from point y to a barn at point x, the number of haybales wasted is given by
Given Q (1≤Q≤2⋅10^5) independent queries each consisting of possible values of (ai,bi), please help Farmer John determine the fewest amount of haybales that will be wasted if he chooses y optimally.
考情分析
观察1:查询的次数很多,可以考虑预处理,由于不需要频繁修改区间,使用前缀和即可。
观察2:题目保证数轴x1...xN上存在一个极小值点y,通过等式变形/反证法可以证明y必定为x1...xN中的一点,同时路径总和f(y)是一个两边往中间递减的单峰函数,可以使用三分法快速逼近y的最优值,三分法模板。
时间复杂度: O(Tlogn)
知识点:三分
USACO竞赛黄金组别考察内容
USACO竞赛黄金组别考察内容包括动态编程、最短路径算法、最小生成树、不相交集、字符串算法、几何算法、Dijkstra,Prim和Kruskal的算法、二叉索引树等。
USACO竞赛黄金组对同学们要求更高,需要参赛者掌握更高级数据结构和算法,并能够在限定时间内解决更困难问题。
USACO竞赛黄金组别晋级分数线
考生在USACO竞赛考到满分,则会自动晋级下一级别的考试,这个时候考生可继续下一等级的考试;
如果不是满分,则需要本场月赛结束后公布晋级线才能确定是晋级下一等级考试,还是继续当前等级考试。
近三年USACO黄金组别晋级分数线,一般是在750-800,供大家参考。
USACO竞赛10年试题精选带源代码真题
USACO竞赛10年真题
在线客服领取
USACO竞赛培训课程
USACO竞赛培训开设班型有USACO基础班、USACO铜升银、USACO银升金、USACO金升铂金多种班型,满足不同同学们的需求,助力同学们顺利通过USACO各级别比赛。
USACO基础班:计算机编程刚入门,语言基础薄弱,无比赛经验计划申请计算机专业学生。
USACO铜升银班:至少会一门计算机编程语言(推荐C++),算法基础较一般,有一定比赛经验。
USACO银升金班:有完善计算机编程语言基础,有入门算法经验,一定比赛经验,如NOIP,USACO银组晋级。
课程类型:精品小班 / 一对一
授课模式:线上线下同步开课,可回放不断学习。
授课语言:中英双语教学 / 纯英文授课
目前我们已在上海、北京、广州、深圳、苏州、杭州、南京、武汉、合肥、青岛、成都、无锡、济南、郑州等多个城市开设校区,致力于为准留学生家庭提供全方位升学服务。
USACO培训班
在线客服咨询
AP03-08
IBDP03-07
小托福04-03
美国留学04-05
微信咨询
支付二维码